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INTRODUCTION 

Recently, Coherent Anti-Stokes Raman Scattering (CARS) spectroscopy has 
undergone several modifications to enhance its usefulness for investigating 
flames. CARS can arise from the nonlinear response of homogeneous media. The 
nonlinear response of a homogeneous medium upon which waves tdj^ and uiy are inci- 
dent generates an oscillating polarization. The lowest order nonlinearity is the 
third order susceptibility, XC3) (-0)3, Wj, o)1, Wj)» which generates a frequency 
component of the polarization at (03= 2uii - 0)2 by the process termed "three wave 
mixing" (ref I). Resonant enhancement of three wave mixing occurs if uii - 0)2 is 
made equal to a Raman active vibration, wv, in which case the enhancement of the 
signal (^3 is termed a CARS process (ref 2). Since CARS is a coherent 
process, m3 is maximized if the wavevectors, k±, are phasematched so that 2ki = 
^2 + k3 where kj equals as^n^/c, c the speed of light, and Oj the refractive index 
at frequency u±. In gases, which are nearly dispersionless, colinear beams are 
phasematched. Using this geometry, since CARS is generated by an iterative 
growth process, the spatial resolution is poor. If IM1 is split and phasematching 
achieved, (1)3 is maximized and, since CARS generation occurs only where all three 
beams intersect, the spatial resolution is improved. The split IOJ phasematched 
geometry is termed "BOXCARS" (ref 3). BOXCARS in which the wavevectors are not 
phasematched in one plane is termed folded (or nonplanar) BOXCARS and has the 
advantage that U3 is easily spatially isolated from the generating beams (refs 4- 
6). 

Conventionally 1^2 is narrowband and scanned to obtain the spectrum at 0)3. 
However, to obtain spectra in transient and/or turbulent media it is appropriate 
to use a broadband u2 [-150 cm

-! full width at half height (FWHH)] to obtain the 
full rovibrational spectrum at 0)2 within the time duration of the laser 
pulse (-10 ns) (ref 7). Averaging of the single-shot spectra may be undertaken 
to improve the slgnal-to-noise according to the constraints of the experiment. 

BOXCARS has been used to obtain temperature and concentration of post-flame 
gases in stationary flames using broadband (ref 8) and narrow band (ref 9) spec- 
tra, and transient flames using single-shot (ref 10) spectra. Recently, laser 
absorption measurements of the temperature and concentration of radicals have 
been reported in the thin reaction zone of atmospheric flames (ref 11). CARS 
measurements in the reaction zone of a flame have not been reported even though 
BOXCARS has more precisely defined spatial resolution in the direction of the 
laser beams than line-of-sight methods such as laser absorption. In addition 
CARS allows direct monitoring of the rovibrational levels of the reactant mole- 
cules as they undergo flame decomposition processes. 

Because of these capabilities, simultaneous measurement of N2 and N2O CARS 
was undertaken in the reaction zone of a lean CH^-^O flame. A lean CHA-NOO 
flame near lift-off creates sufficiently sharp spatial and temperature gradients 
to show the capabilities of CARS. N20 CARS spectra, which have not been prev- 
iously reported, have structure at lower temperatures than diatomics due to the 
population of low-lying bending modes. N20 CARS spectra are especially suitable 
for studying initial decomposition reaction in a CH4-N2O flame. 



EXPERIMENTAL METHOD 

CARS spectra were generated using the apparatus shown In figure 1. Non- 
planar BOXCARS was utilized to achieve phasematching. The output of a Quanta-Ray 
DCR-1A Nd/YAG laser at 1.06 microns (700 mj) is doubled to generate the pump beam 
at 5320 A (250 mj) with a bandwidth near 1 cm~l. The pump beam is separated from 
the primary beam using prisms. The pump beam is split using beam splitter BS1 to 
generate Wjp and a^s. a^s is used to pump a dye laser to generate the Stokes 
beam, 0)2. The dye laser consists of a flowing dye cell in a planar Fabry-Perot 
oscillator cavity pumped slightly off-axis by 20% of o^s with the output ampli- 
fied by an additional dye cell pumped by the remainder of oijs. The dye laser was 
operated broadband using Exciton Rhodamine 640 in dry methanol at a concentration 
of 2.4 x 10-^ M and 3.2 x lO-^ M in the oscillator and amplifier dye cell, re- 
spectively, to produce 30 mj centered at 6060 A (16502 cm-1) with a bandwidth of 
121 cm-l. To achieve BOXCARS geometry, Mjjp is again split with beam splitter, 
BS2, to generate Bj and Wj, In the optical configuration used to generate non- 
planar BOXCARS, the 6>i, w^, and U2 beams are parallel and situated on a circle of 
1 inch diameter at the focusing lens (200 mm focal length) with Mj and uij in the 
central horizontal plane of the lens and C02 below toj and w^ in the central verti- 
cal plane. Telescopes are inserted in the Wjp and W2 beams to allow the focal 
spot size of both beams to be equalized. The telescopes also allow the position 
of the o^, UJ|, and 0)2 beamwaists to be adjusted so that they all intersect after 
focusing. This was achieved using 0.85 and 2x Galilean telescopes 
in Wjp and 0)2, respectively. To achieve phasematching a 12.5 mm thick optical 
flat rotatable about it's horizontal axis was inserted into W2 before focusing. 
It is adjusted to maximize the 0)3 signal. The beams were recollimated with a 
lens (200 mm focal length) after which the (1)3 was located below the plane 
of mi and (d^« 11)1, Wj, and (1)2 were terminated with a neutral density filter 
(0D4). 0)3 was focused using a 50 ram focal length lens onto the slits of a 1/4- 
meter monochromator equipped with a 1,800 line per millimeter grating and 100- 
micron slits. The signal was detected by a PAR SIT detector and processed by a 
PAR 0MA2 system. Neon lines were used to calibrate the monochrometer. The FWHH 
of the Neon lines nearest w3 were determined to be 6.4 cm-l with 2.33 cm~l per 
channel. 

Flame measurements were made on a premixed CH^-^O flame maintained on a 
circular burner of 1.4 cm diameter. The burner surface was constructed of a 
matrix of steel syringe needles of 0.2 cm outer diameter so that a flat flame is 
obtained under suitable flow conditions. Matheson technical grade methane and 
chemically pure nitrous oxide were separately flowed through Matheson rotameters 
prior to premixing. The flow through the burner was adjusted to 16.1 cm/s to 
maintain a 0.27 fuel-air equivalence ratio flame, which is near lift-off, local- 
ized at a few syringe tubes near the center of the burner. The oblong shaped 
flame increased in size to approximately 5 mm in diameter at 10 mm above the 
burner surface. Increasing the methane flow to that for a 0.31 equivalence ratio 
flame gave a flat flame at a flow of 16.3 cm/s. The center line of the burner 
was placed at the intersection of the M^, wj, and (^2 beamwaists. The burner was 

mounted on horizontal and vertical translation stages. 



RESULTS 

Broadband N2 and N2O spectra were obtained from the reaction zone of both 
the 0.27 and 0.30 equivalence ratio flames. In addition, N2 spectra were ob- 
tained in the post-flame region of these flames. The 0.27 equivalence ratio 
flame was scanned horizontally from the outer wall of the burner to the center- 
line at a height of 1 mm above the burner surface. N2 and H2O spectra obtained 
from the region of largest concentration and temperature gradiant prior to the 
disappearance of N2O are shown in figure 2. The 0.30 equivalence ratio flame, 
which was a flat flame, was scanned vertically along the center line. Spectra 
similar to that shown in figure 2 were obtained below the region of maximum tem- 
perature . 

To identify N2O CARS spectra, which had not been reported previously, CARS 
spectra were also taken 1 mm above the centerline of the burner with room temper- 
ature N2O gas flowing through the burner at a velocity sufficient to remove N* 
from the sampling volume. Spectra were taken above both a room temperature burn- 
er and a burner heated by heat transfer from a flame extinguished immediately 
prior to the measurement. The room temperature N2O spectra had a prominent peak 
at 2224.7 cm-1 with a low intensity shoulder at 2208.8 cm-1. The spectra taken 
above the hot burner showed four peaks of progressively diminishing intensity at 
2224.7, 2208.8, 2192.8, and 2174.7 cm-1.  Similar peaks have been observed at 
2223.8, 2209.5, and 2195.6 cm-1 in the infrared and Raman at 337 K and assigned 
to V3, V3 + ^2 - V2 and V3 + 2V2 - 2V2 where Vj, V2» and v3 are the NO stretch at 
1285, the bend at 558.8 and the NN stretch at 2223.5 cm-1, respectively (ref 
12). The positions of V3, V3, + V2 - V2, V3 + 2V2 -2v2, and v3 + 3v2 - 3v2, us- 
ing Susuki's values (ref 13) for the spectroscopic constants are calculated to 
occur at 2223.5, 2201.5, 2195.3, and 2180.3 cm-l in good agreement with 
the N2O peak position observed in the spectrum taken above the hot burner. The 
spectra taken in the flame shown in figure 2 show, in addition to a peak attrib- 
utable to the N2 Q branch fundamental, Qin' at 2330 cm-1 and associated hot 
bands, the same peaks that occur in N2O above the hot burner. An expanded ver- 
sion of the spectrum taken 1.4 mm from the centerline is shown in figure 3. This 
spectrum clearly shows the resolved structure of hot ^0. 

The spectra shown in figure 2 and similar spectra taken at other positions 
in the flame allow the determination of temperature and concentration of N2 and 
N2O. N2 CARS spectra were calculated using the method outlined in reference 14 
and N2 spectral parameters given in references 14 and 15. The observed CARS 
spectrum is proportional to the square of the modulus of the third order suscep- 
tibility, x^ '» which is the sura of a resonant term, ■% , related to a nuclear 
displacement and a nonresonant term, v , related to electronic displacement 

The resonant term is calculated as a sum of Lorentian line shapes of each 
Q(J) rotational transition which are a function of the number density of the 
resonant molecule, the Raman cross section, the Blotzman population difference 



and the Isolated llnewidth.  The calculated/x^/^ is first convoluted over the 
laser line shapes and then over a triangular instrumental slit function. 

Y is the sum of real and imaginary component x" and x" respectively, 

/X(3)/2 = X'2 + 2x' V + X"2 (2) 

so that x' an<i X'*"' display resonant and dispersive behavior with respect to the 
detuning frequency, (ttj - caj - ((O^ - uj) where (Oj is the frequency of the Raman 
resonance. As the concentration of the resonant species is lowered the cross 
term x'Xnr» which is dispersive, modulates the shape of the spectrum. The obser- 
vation of dispersively modulated spectra allows estimation of the concentration 
in addition to the temperature based on model calculations. Comparison of the 
half width of the nitrogen Q^Q transition and the modulation of spectra by the 
nonresonant susceptibility with model calculations allows the estimation of tem- 
perature to ±100 K and concentration to ±10% when no hot bands are observed. 
Observation of hot bands allows least squares fitting of the calculated and ex- 
perimental Q peaks maxima to give temperature to ±50 K and concentration to ±5% 
based on replicate determinations. The spectra shown in the top of figure 3b 
were obtained at 2 mm above the burner in a 0.3 flame. The temperature and con- 
centration calculated for this flame were 2550 ± 50 K and 60% ± 5% N2. This 
temperature was the highest temperature measured in a temperature profile up to 6 
cm along the centerline above the burner. The concentration remained constant 
above 2 mm within the 5% experimental uncertainty. The temperature and concen- 
tration obtained from thermochemical calculations (ref 16), 2541 K and 61.6% N2, 
are within the error of the experimentally determined values. Calculated spectra 
are shown in figure 3. The temperature and concentrations estimated for the 0.27 
flame are given in table 1. 

In addition, the concentration of N2O can be estimated from the resonant and 
nonresonant intensity at v-i. Knowing the spectrum of the nonresonant suscepti- 
bility, the nonresonant intensity at V3 can be obtained from each broadband spec- 
trum. The square root of the ratio of the resonant to nonresonant intensity, 
which is linear with concentration, was used to obtain NoO concentration utiliz- 
ing the broadband N2O spectrum at room temperature for calibration. Having 
obtained the concentration of KLO, the N2 concentration can be obtained from the 
ratios of N2 to N2O intensity which are shown in figure 4 taking into account 
that resonant cross section of N2O is 0.53 that of N2 (ref 17). 

* 
The  effect  of  temperature,  which was  small  since both the resonant and 
nonresonant susceptibility scale similarly with temperature, was determined from 
model calculations. 



DISCUSSION 

CARS NoO spectra obtained above both room temperature and heated burner 
heads are in good agreement with previously reported Raman and infrared spectra 
(ref 12) and with the results of calculations made using the spectral constants 
of Suzuki (ref 13). CARS ^0 spectra has the advantage of having structure use- 
ful for making measurements of temperature and concentration at much lower tem- 
peratures than diatomics such as nitrogen. From the temperature obtained from N~ 

spectra given in table 1, the normalized intensity of the N2O V3 + \>2 ~ ^2 band 
relative to V3 is greater than 0.1 above 600 K, whereas the normalized intensity 
of the N2 Qoi band does not reach 0.1 until the temperature exceeds 1500 K. The 
higher intensity of the N2O V3 + V2 ~ v2 band arises from the low energy and 
double degeneracy of the V2 vibration. Thus N2O and similar triatoraics are es- 
pecially valuable for characterizing the lower temperatures regions of the pro- 
files obtained in the 0.27 flame. In this region the N2 spectra was not suffic- 
iently intense to precisely estimate temperature. The complete modeling of N2O 
CARS spectra which is now underway will allow these calculations to be made. 

The simultaneous observation of N2 spectra along with N2O spectra allows 
determination of N2 to ^0 relative concentration, N2 and ^0 temperature and 
concentration. The random error in the N2O resonant to nonresonant intensity 
ratios depend solely on the photon statistics of the measurements. (In the worst 
case the resultant error would be 5% in ^ concentration). The accuracy of the 
N2 concentrations determined from the relative intensity of N2 to N2O also de- 
pends on the relative ratios of the Raman cross sections. The N2 temperature and 
concentrations determined from the shape of the N2 CARS signal depends on the Nn 
spectral parameters and the spectral simulation model which together have been 
estimated to give errors of ±100 K at low temperature and 10% in concentration in 
flames when only N2 Q^Q is observed. The average difference between N2 concen- 
tration determined from intensity ratio and band shape is only 10% which is con- 
sistent with the estimated error in the methods used. When additional hot bands 
are observed the precision is increased to ±50 K in temperature and 5% in concen- 
tration. 

The data given in figure 4 gives insight into the chemical and physical 
processes occurring in the very spatially inhomogeneous 0.27 flame. N2 from the 
surrounding air diffuses into the flame for a distance of approximately 2 mm at 
which point N2 CARS spectra is no longer observed (fig. 4). N2 is again observed 
when measurements are made closer than 2.3 mm from the centerline of the flame. 
The (^/^O)^ ratio then rises exponentially as measurements closer to the flame 
are made with a concomitant rise in temperature. 

H2-N2O flames have been studied in detail using mass spectometric means to 
obtain concentration (ref 18). From these studies it is suggested that the H«- 
N2O flame has a two stage reaction zone. In the first stage (T<1700 K) the ki- 
netics follow the usual bimolecular elementary steps of the hydrogen-oxygen 
system: 

H2 + OH + H2O + H        r. 1 

H2 + 0->-0H + H r.2 



H + 02 ->- OH + H r. 3 

plus reaction 

H + N20 ♦ N2 + OH        r. 4 

where k4 = 6 x 1013 exp (-13100/RT)cm3 mole ls   1 such that all these reactions 
are characterized by a relatively low activation energy. 

The second stage (T>1700 K) is dominated by the uniraolecular decomposition 
of N2O 

N20 + M->-N2 + 0 + M     r.5 

where kg = 1.3 x 1015 exp (-56500/RT).  Molecular oxygen is produced via 

N20 + 0 ->■ N2 + 02        r. 6 

and NO via 

N20 + 0 > 2N0 r. 7 

where k6 = 5.4 x 1014 exp (-3200/RT)cm3mole"1s"1 with k6/k7 = 3.2. 

The data given in table 1 and figure 4 are consistent with the kinetics 
proposed above for stage one, in that N2 is observed to occur at temperatures 
below the 1700 K at which the stage two reactions become significant. Thus reac- 
tion 4 is seen as a possible source of the N2 observed at low temperature in the 
CH^-N20 flame. Further kinetic analysis particularly dependent on temperature 
and concentration from N20 spectra, will determine whether reaction 4 can quanti- 
tatively account for the N2 and N20 profiles observed in the CHA-NOO flame. 

Broadband CA.RS has been shown to provide temperature and concentration with 
good precision for major flame species which can perhaps be extended to tran- 
sients with resonance enhancement. The spatial resolution of the technique was 
adjusted to obtain information from the thin resolution zone (<1 ram) of the atmo- 
spheric CH^-N20 flame. The technique also has the potential for time resolved 
single shot (10 ns) measurements for use in transient media. These capabilities 
as has been shown in the CH^-^O flame can be used to obtain information on the 
elementary reactions occurring in both transient and stationary flames. 
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Distance from 
flame center 

(mm) 

0 

1.14 

1.27 

1.40 

1.52 

1.65 

1.78 

2.03 

2.16 

Table 1. Temperature and concentration in the reaction zone 
of a CH4-N2O flame (2 mm above the burner) 

Concentration from      Concentration and temperature 
intensity (%) from N2 spectral shape 

N20 N2       N2(%) T(K) 

33 2300 

0 —        20                    1200 

20 19.0        17                   900 

28 15.0        14                   800 

43 11.0        10                   600 

58 9.4 

69 7.9 

83 6.0 

93 
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2160.0 2320.0 2400.0 

FREQUENCY (cm 1 ) 

Figure 3a.  CARS spectra observed 1 mm above the burner head in a 0.27 CH4-N2O 
flame (•) compared to theoretical spectra (solid line), calculated 
at T = 800 K and C = 14% N2 and T = 1200 and C = 20% N2 for spectra 
obtained 1.40 (TOP SPECTRUM) and 1.14 mm (BOTTOM SPECTRUM) from the 
centerline of the flame, respectively. 
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Figure 3b,  TOP SPECTRUM:  N2 CARS spectrum observed 2 mm above the centerline 
of 0.3 CH^-^O flame (*) compared theoretical spectrum calculated 
at T = 2550 K and C = 62% N , 
BOTTOM SPECTRUM:  N2 CARS spectrum observed 1 mm above the center- 
line of a 0.27 CH^-^O flame (•) compared to theoretical spectrum 
calculated at T = 2300 K and C 
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Figure 4.  (IN9-IN2
0
)^ (') obtained from CARS spectra taken 1 mm above the 

burner head of a 0.27 CH^-^O flame and corresponding temperatures 
(') versus distance from the centerline of the burner. 
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